The application of diffusion–reaction mixed model to assess the best experimental conditions for bark chemical activation to improve copper(II) ions adsorption
نویسندگان
چکیده
Natural sorbents have been thoroughly assessed to determine their adsorption capabilities to remove pollutants from industrial wastewaters. Among them, pine bark has demonstrated potential for carrying out the removal of contaminants, particularly heavy metals, at the level of traces present in dissolved state. Nevertheless, to move towards the wastewater treatment implementation at large scale, the handling and processing requirements of pine bark to optimise the adsorption of heavy metals must be fully assessed. This research study presents a new mathematical model to evaluate the impact of acid pretreatment of pine bark on heavy metals adsorption at different pine bark-aqueous solution pulp densities. A diffusion–reaction mixed model was developed and applied to the case study of copper(II) adsorption onto pine bark. The low binding energy inferred from analysing the adsorption isotherms suggested that a diffusive mechanism is governing the whole process. The mixed diffusion–reaction kinetic model indicated that the activation increases the rate at which metal ions are adsorbed, but it reduces the maximum achievable adsorption which in turn restricts its usefulness to relatively high pulp densities (above 10 g/L). The latter constitutes the first step towards optimising the use of bark pine for treating wastewater polluted with heavy metals and for establishing rules for scaling-up the process.
منابع مشابه
Adsorption of Copper (II) Ions from Aqueous Solution onto Activated Carbon Prepared from Cane Papyrus
The present study evaluates the suitability ofactivated carbon, prepared from Cane Papyrus, a plant that grows naturally and can be found quite easily, which serves as a biological sorbent for removal of Cu2+ ions from aqueous solutions. Fourier transform infra-red analysis for the activated carbon, prepared fromCane Papyrus confirms the presence of amino (–NH), carbonyl (–C=O), and hydroxyl (...
متن کاملAdsorption of Copper (II) Ions from Aqueous Solution onto Activated Carbon Prepared from Cane Papyrus
The present study evaluates the suitability ofactivated carbon, prepared from Cane Papyrus, a plant that grows naturally and can be found quite easily, which serves as a biological sorbent for removal of Cu2+ ions from aqueous solutions. Fourier transform infra-red analysis for the activated carbon, prepared fromCane Papyrus confirms the presence of amino (–NH), carbonyl (–C=O), and hydroxyl (...
متن کاملRemoval of copper (II) from aqueous solutions by adsorption onto granular activated carbon in the presence of competitor ions
In this work, the removal of copper from an aqueous solution by granular activated carbon (GAC) in the presence of competitor ions was studied. A batch adsorption was carried out and different parameters such as pH, contact time, initial copper concentration and competitor ions concentration were changed to determine the optimum conditions for adsorption. The optimum pH required for maximum ads...
متن کاملAdsorption of Ni2+ Ions onto NaX and NaY Zeolites: Equilibrium, Kinetics, Intra Crystalline Diffusion, and Thermodynamic Studies
This paper focuses on intra crystalline diffusion of Ni2+ ions onto NaX and NaY zeolites. The zeolites are obtained by the hydrothermal synthesis method. The samples were characterized by several techniques: X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) and InfraRed Spectroscopy (FT-IR). Physical parameters such as p...
متن کاملPreparation of Nanochitosan as an Effective Sorbent for the Removal of Copper Ions from Aqueous Solutions
The most important pollutants in wastewater are heavy metal ions. In this paper, the effects of various parameters such as pH, contact time, initial concentration, and temperature on the adsorption of Cu (II) by nanochitosan (NCS) was investigated in batch experiment. Nanochitosan was prepared based on ionic gelation and characterized by means of Fourier Transform Infrared Spectroscopy (FTIR),...
متن کامل